CMSC201

Computer Science I for Majors

Lecture 05 - Algorithmic Thinking

Last Class We Covered

- Decision structures
- One-way (using if)
- Two-way (using if and else)
- Multi-way (using if, elif, and else)
- Nested decision structures

Any Questions from Last Time?

Today's Objectives

- To practice thinking algorithmically
- To understand and be able to implement proper program development -To learn more about "bugs"
- To get practice with decision structures
- (Lots of practice)

What is an Algorithm?

- Steps used to solve a problem
- Problem must be
- Well defined
- Fully understood by the programmer
- Steps must be
- Ordered
- Unambiguous
- Complete

Algorithmic Thinking

- Algorithms are an ordered set of clear steps that fully describes a process
- Examples from real life?
- Recipes
- Driving directions
- Instruction manual (IKEA)
- (maybe not so much)

Developing an Algorithm

Program Development

1. Understand the problem
2. Represent your solution (your algorithm)

- Pseudocode
- Flowchart

3. Implement the algorithm in a program
4. Test and debug your program

Step 1: Understanding the Problem

- Input
- What information or data are you given?
- Process
- What must you do with the information/data?
- This is your algorithm!
- Output
- What are your deliverables?

- Can be done with flowchart or pseudocode
- Flowchart

- Symbols convey different types of actions
- Pseudocode
- A cross between code and plain English
- One may be easier for you - use that one

Steps 3 and 4: Implementation and Testing/Debugging

- Implementing and testing/debugging your program are two steps that go hand in hand
- After implementing, you must test it
- After discovering errors, you must find them
- Once found, you must fix them
- Once found and fixed, you must test again

Development Example: Weekly Pay

- Create a program to calculate the weekly pay of an hourly employee
- What is the input, process, and output?
- Input: pay rate and number of hours
- Process: multiply pay rate by number of hours
- Output: weekly pay

Flowchart Symbols

End Symbol

Decision Symbol

Step 2A: Flowchart

Step 2B: Pseudocode

- Start with a plain English description, then...

1. Display "Number of hours worked: "
2. Get the hours
3. Display "Amount paid per hour: "
4. Get the rate
5. Compute pay $=$ hours * rate
6. Display "The pay is \$" , pay

- Notice that developing the algorithm didn't involve any Python at all
- Only pseudocode or a flowchart was needed
- An algorithm can be coded up in any language
- All languages share certain tools that can be used in your algorithms
- For example, control structures

Exercise: Are Dogs Good?

- Ask the user if a dog is a good dog
- Print out one response for "yes"
- Print out a different response for any other answer

Debugging

A Bit of History on "Bugs"

Rear Admiral Grace Hopper

- US Navy lab (Sep 1947)
- Grace Hopper and her colleagues were working on the Harvard Mark II
- Instructions read one at a time from a tape
- Or trying to... it wasn't working right

A Bit of History on "Bugs"

Mark II, general view of calculator frontpiece, 1948.

- Mark II was a LARGE machine that took up an entire room
- You could open each panel and look inside
- They found a literal bug inside the machine
- Taped the bug (a moth) into their log book

Errors ("Bugs")

- Two main classifications of errors
- Syntax errors
- Prevent Python from understanding what to do
- Logical errors
- Cause the program to run incorrectly, or to not do what you want

PB\&J Using Exact Instructions

- "You're not even making any sense! He's already ruined it on purpose, he knows how to make one."
- Watch the video here
- (Image from Josh Darnit's

Exact Instructions Challenge)

Syntax Errors

- "Syntax" is the set of rules followed by a computer programming language
- Similar to grammar and spelling in English
- Examples of Python's syntax rules:
- Keywords must be spelled correctly

True and False, not Ture or Flase or Truu

- Quotes and parentheses must be closed: ("open and close")

Syntax Error Examples

- Find the syntax errors in each line of code below:

1 prnit("Hello")
2 print("What"s up?")
3 print("Aloha!)
4 print("Good Monring")

Syntax Error Examples

- Find the syntax errors in each line of code below:

Syntax Error Examples

- Find the syntax errors in each line of code below:

1 prnit("Hello")
2 print("What"s up?")
3 print("Aloha!)
4 print("Good Monring")
The syntax highlighting in emacs can often help you see where the errors are

Logical Errors

- Logical errors don't bother Python at all... they only bother you!
- Examples of logical errors:
- Using the wrong value for something currentYear = 2013
- Doing steps in the wrong order
- "Put the pan in the oven. Preheat the oven.

Pour the batter into the pan, spreading evenly."

Comments in Debugging

- Comments are often used to convey what your program is doing
- If there is a bug, however, your code may not actually be accomplishing that task
- Comments are very useful when debugging, because they separate intent from actuality
- "Is your code working?" and "Is your code doing what it's supposed to do?" are very different questions

Practicing Decision Structures

Exercise: Nail Polish

- Dr. Gibson has a LOT of nail polish
- Write a game where the user guesses how many bottles she has, and tell them whether their guess was high, low, or correct
- What info do you need?
- (She has 296 bottles)

Exercise: Moving on to CMSC 202

- Ask the user their major and the grade they earned in CMSC 201
- Print out whether they can move on to CMSC 202 next semester
- If they're a CMSC or CMPE major - They need an A or a B
- Otherwise
- They need an A, B, or a C

Daily emacs Shortcut

- CTRL+S
- Allows you to search within a file
- (To remember: S stands for "search")
- Hit CTRL+S, then type in what you want to find
- Hit CTRL+S again to find the next occurrence
- If you reach the end of the file and want to start back at the beginning, hit CTRL+S again
- Use any movement (arrows, etc.) to exit
- HW 2 is out on Blackboard now
- Complete the Academic Integrity Quiz to see it
- Due by Friday (Sept 22nd) at 8:59:59 PM
- Make sure to spell the dog breeds correctly!
- Will make it much easier for your TA to grade
- Pre Lab 4 Quiz will come out Friday @ 10 AM
- Must be completed by 10 AM Monday morning
- IKEA instructions (adapted from):
- https://www.flickr.com/photos/girlinblack/6697086037
- Three dogs:
- https://pixabay.com/p-984015/
- Rear Admiral Grace Hopper:
- https://commons.wikimedia.org/wiki/File:Grace_Hopper.jpg
- Mark II:
- http://amhistory.si.edu/archives/images/d8324-1.jpg
- Notebook bug (adapted from):
- https://commons.wikimedia.org/wiki/File:H96566k.jpg
- Computer bug:
- https://pixabay.com/p-1296767/
- Nail polish (adapted from):
- https://pixabay.com/p-870857/
- Question mark man:
- https://pixabay.com/p-1019993/

